Skip to main content

Advertisement

Log in

Mesenchymal Stem Cells: Miraculous Healers or Dormant Killers?

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal Stem Cells (MSCs) are a heterogeneous population of fibroblast-like cells which maintain self-renewability and pluripotency to differentiate into mesodermal cell lineages. The use of MSCs in clinical settings began with high enthusiasm and the number of MSC-based clinical trials has been rising ever since. However; the very unique characteristics of MSCs that made them suitable to for therapeutic use, might give rise to unwanted outcomes, including tumor formation and progression. In this paper, we present a model of carcinogenesis initiated by MSCs, which chains together the tissue organization field theory, the stem cell theory, and the inflammation-cancer chain. We believe that some tissue resident stem cells could be leaked cells from bone marrow MSC pool to various injured tissue, which consequently transform and integrate in the host tissue. If the injury persists or chronic inflammation develops, as a consequence of recurring exposure to growth factors, cytokines, etc. the newly formed tissue from MSCs, which still has conserved their mesenchymal and stemness features, go through rapid population expansion, and nullify their tumor suppressor genes, and hence give rise to neoplastic cell (carcinomas, sarcomas, and carcino-sarcomas). Considering the probability of this hypothesis being true, the clinical and therapeutic use of MSCs should be with caution, and the recipients’ long term follow-up seems to be insightful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nombela-Arrieta, C., Ritz, J., & Silberstein, L. E. (2011). The elusive nature and function of mesenchymal stem cells. Nature Reviews. Molecular Cell Biology, 12(2), 126–131. https://doi.org/10.1038/nrm3049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Charbord, P. (2010). Bone marrow mesenchymal stem cells: historical overview and concepts. Human Gene Therapy, 21(9), 1045–1056. https://doi.org/10.1089/hum.2010.115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Friedenstein, A. J., Piatetzky II, S., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology, 16(3), 381–390.

    PubMed  CAS  Google Scholar 

  4. Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3(4), 393–403.

    PubMed  CAS  Google Scholar 

  5. Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650. https://doi.org/10.1002/jor.1100090504.

    Article  PubMed  CAS  Google Scholar 

  6. Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. [Research Support, Non-U.S. Gov't Review]. Bioscience Reports, 35(2). https://doi.org/10.1042/BSR20150025.

  7. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905.

    Article  PubMed  CAS  Google Scholar 

  8. Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., et al. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7(5), 393–395. https://doi.org/10.1080/14653240500319234.

    Article  PubMed  CAS  Google Scholar 

  9. Wang, Y., Chen, X., Cao, W., & Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nature Immunology, 15(11), 1009–1016. https://doi.org/10.1038/ni.3002.

    Article  PubMed  CAS  Google Scholar 

  10. Meirelles Lda, S., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20(5–6), 419–427. https://doi.org/10.1016/j.cytogfr.2009.10.002.

    Article  CAS  Google Scholar 

  11. https://clinicaltrials.gov/ct2/results?term=mesenchymal+stem+cell&Search=Apply&recrs=b&recrs=a&recrs=f&recrs=d&recrs=e&age_v=&gndr=&type=&rslt=&phase=2&phase=3 (2017).

  12. Phinney, D. G., Galipeau, J., Krampera, M., Martin, I., Shi, Y., & Sensebe, L. (2013). MSCs: science and trials. Nature Medicine, 19(7), 812. https://doi.org/10.1038/nm.3220.

    Article  PubMed  CAS  Google Scholar 

  13. Elzaouk, L., Moelling, K., & Pavlovic, J. (2006). Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Experimental Dermatology, 15(11), 865–874. https://doi.org/10.1111/j.1600-0625.2006.00479.x.

    Article  PubMed  CAS  Google Scholar 

  14. Khakoo, A. Y., Pati, S., Anderson, S. A., Reid, W., Elshal, M. F., Rovira, I. I., et al. (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. The Journal of Experimental Medicine, 203(5), 1235–1247. https://doi.org/10.1084/jem.20051921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563. https://doi.org/10.1038/nature06188.

    Article  PubMed  CAS  Google Scholar 

  16. Ridge, S. M., Sullivan, F. J., & Glynn, S. A. (2017). Mesenchymal stem cells: key players in cancer progression. Molecular Cancer, 16(1), 31. https://doi.org/10.1186/s12943-017-0597-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kidd, S., Spaeth, E., Dembinski, J. L., Dietrich, M., Watson, K., Klopp, A., et al. (2009). Direct Evidence of Mesenchymal Stem Cell Tropism for Tumor and Wounding Microenvironments Using In Vivo Bioluminescent Imaging. Stem Cells, 27(10), 2614–2623. https://doi.org/10.1002/stem.187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Quante, M., Tu, S. P., Tomita, H., Gonda, T., Wang, S. S., Takashi, S., et al. (2011). Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 19(2), 257–272. https://doi.org/10.1016/j.ccr.2011.01.020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M., & Marini, F. (2008). Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Therapy, 15(10), 730–738. https://doi.org/10.1038/gt.2008.39.

    Article  PubMed  CAS  Google Scholar 

  20. Bartosh, T. J., Ullah, M., Zeitouni, S., Beaver, J., & Prockop, D. J. (2016). Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs). Proceedings of the National Academy of Sciences of the United States of America, 113(42), E6447–E6456. https://doi.org/10.1073/pnas.1612290113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shi, Y., Du, L., Lin, L., & Wang, Y. (2017). Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nature Reviews. Drug Discovery, 16(1), 35–52. https://doi.org/10.1038/nrd.2016.193.

    Article  PubMed  CAS  Google Scholar 

  22. Ishihara, S., Inman, D. R., Li, W. J., Ponik, S. M., & Keely, P. (2017). Mechano-signal transduction in mesenchymal stem cells induces prosaposin secretion to drive the proliferation of breast cancer cells. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-17-0569.

  23. Barcellos-de-Souza, P., Comito, G., Pons-Segura, C., Taddei, M. L., Gori, V., Becherucci, V., et al. (2016). Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-1. Stem Cells, 34(10), 2536–2547. https://doi.org/10.1002/stem.2412.

    Article  PubMed  CAS  Google Scholar 

  24. Mishra, P. J., Mishra, P. J., Humeniuk, R., Medina, D. J., Alexe, G., Mesirov, J. P., et al. (2008). Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Research, 68(11), 4331–4339. https://doi.org/10.1158/0008-5472.Can-08-0943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang, Y., Liu, J., Jiang, Q., Deng, J., Xu, F., Chen, X., et al. (2017). Human adipose-derived mesenchymal stem cell-secreted CXCL1 and CXCL8 facilitate breast tumor growth by promoting angiogenesis. Stem Cells, 35(9), 2060–2070. https://doi.org/10.1002/stem.2643.

    Article  PubMed  CAS  Google Scholar 

  26. Zhou, X. M., Wang, D., He, H. L., Tang, J., Wu, J., Xu, L., et al. (2017). Bone marrow derived mesenchymal stem cells involve in the lymphangiogenesis of lung cancer and Jinfukang inhibits the involvement in vivo. Journal of Cancer, 8(10), 1786–1794. https://doi.org/10.7150/jca.17859.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huang, W. H., Chang, M. C., Tsai, K. S., Hung, M. C., Chen, H. L., & Hung, S. C. (2013). Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene, 32(37), 4343–4354. https://doi.org/10.1038/onc.2012.458.

    Article  PubMed  CAS  Google Scholar 

  28. Beckermann, B. M., Kallifatidis, G., Groth, A., Frommhold, D., Apel, A., Mattern, J., et al. (2008). VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. British Journal of Cancer, 99(4), 622–631. https://doi.org/10.1038/sj.bjc.6604508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chen, K., Liu, Q., Tsang, L. L., Ye, Q., Chan, H. C., Sun, Y., et al. (2017). Human MSCs promotes colorectal cancer epithelial-mesenchymal transition and progression via CCL5/beta-catenin/Slug pathway. Cell Death & Disease, 8(5), e2819. https://doi.org/10.1038/cddis.2017.138.

    Article  CAS  Google Scholar 

  30. Takigawa, H., Kitadai, Y., Shinagawa, K., Yuge, R., Higashi, Y., Tanaka, S., et al. (2017). Mesenchymal stem cells induce epithelial to mesenchymal transition in colon cancer cells through direct cell-to-cell contact. Neoplasia, 19(5), 429–438. https://doi.org/10.1016/j.neo.2017.02.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Martin, F. T., Dwyer, R. M., Kelly, J., Khan, S., Murphy, J. M., Curran, C., et al. (2010). Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Research and Treatment, 124(2), 317–326. https://doi.org/10.1007/s10549-010-0734-1.

    Article  PubMed  CAS  Google Scholar 

  32. So, K. A., Min, K. J., Hong, J. H., & Lee, J. K. (2015). Interleukin-6 expression by interactions between gynecologic cancer cells and human mesenchymal stem cells promotes epithelial-mesenchymal transition. International Journal of Oncology, 47(4), 1451–1459. https://doi.org/10.3892/ijo.2015.3122.

    Article  PubMed  CAS  Google Scholar 

  33. Maffey, A., Storini, C., Diceglie, C., Martelli, C., Sironi, L., Calzarossa, C., et al. (2017). Mesenchymal stem cells from tumor microenvironment favour breast cancer stem cell proliferation, cancerogenic and metastatic potential, via ionotropic purinergic signalling. Scientific Reports, 7(1), 13162. https://doi.org/10.1038/s41598-017-13460-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. El-Badawy, A., Ghoneim, M. A., Gabr, M. M., Salah, R. A., Mohamed, I. K., Amer, M., et al. (2017). Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state. Stem Cell Research & Therapy, 8(1), 254. https://doi.org/10.1186/s13287-017-0709-9.

    Article  Google Scholar 

  35. Jiang, C., Zhang, Q., Shanti, R. M., Shi, S., Chang, T. H., Carrasco, L., et al. (2017). Mesenchymal stromal cell-derived interleukin-6 promotes epithelial-mesenchymal transition and acquisition of epithelial stem-like cell properties in ameloblastoma epithelial cells. Stem Cells, 35(9), 2083–2094. https://doi.org/10.1002/stem.2666.

    Article  PubMed  CAS  Google Scholar 

  36. Cortini, M., Massa, A., Avnet, S., Bonuccelli, G., & Baldini, N. (2016). Tumor-activated mesenchymal stromal cells promote osteosarcoma stemness and migratory potential via IL-6 secretion. PLoS One, 11(11), e0166500. https://doi.org/10.1371/journal.pone.0166500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lu, J. H., Wei, H. J., Peng, B. Y., Chou, H. H., Chen, W. H., Liu, H. Y., et al. (2016). Adipose-derived stem cells enhance cancer stem cell property and tumor formation capacity in Lewis lung carcinoma cells through an interleukin-6 paracrine circuit. Stem Cells and Development, 25(23), 1833–1842. https://doi.org/10.1089/scd.2016.0163.

    Article  PubMed  CAS  Google Scholar 

  38. Hossain, A., Gumin, J., Gao, F., Figueroa, J., Shinojima, N., Takezaki, T., et al. (2015). Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells, 33(8), 2400–2415. https://doi.org/10.1002/stem.2053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Xiao, W., Mohseny, A. B., Hogendoorn, P. C., & Cleton-Jansen, A. M. (2013). Mesenchymal stem cell transformation and sarcoma genesis. Clinical Sarcoma Research, 3(1), 10. https://doi.org/10.1186/2045-3329-3-10.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang, J., Ren, Z., Du, X., Hao, M., & Zhou, W. (2014). The role of mesenchymal stem/progenitor cells in sarcoma: update and dispute. Stem Cell Investigation, 1, 18. https://doi.org/10.3978/j.issn.2306-9759.2014.10.01.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Spaeth, E. L., Dembinski, J. L., Sasser, A. K., Watson, K., Klopp, A., Hall, B., et al. (2009). Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One, 4(4), e4992. https://doi.org/10.1371/journal.pone.0004992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Worthley, D. L., Ruszkiewicz, A., Davies, R., Moore, S., Nivison-Smith, I., To, L. B., et al. (2009). Human Gastrointestinal Neoplasia-Associated Myofibroblasts Can Develop from Bone Marrow-Derived Cells Following Allogeneic Stem Cell Transplantation. Stem Cells, 27(6), 1463–1468. https://doi.org/10.1002/stem.63.

    Article  PubMed  CAS  Google Scholar 

  43. Li, G. C., Zhang, H. W., Zhao, Q. C., Sun, L. I., Yang, J. J., Hong, L., et al. (2016). Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor beta1. Oncology Letters, 11(2), 1089–1094. https://doi.org/10.3892/ol.2015.3997.

    Article  PubMed  CAS  Google Scholar 

  44. Bexell, D., Gunnarsson, S., Tormin, A., Darabi, A., Gisselsson, D., Roybon, L., et al. (2009). Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Molecular Therapy, 17(1), 183–190. https://doi.org/10.1038/mt.2008.229.

    Article  PubMed  CAS  Google Scholar 

  45. Wang, H. H., Cui, Y. L., Zaorsky, N. G., Lan, J., Deng, L., Zeng, X. L., et al. (2016). Mesenchymal stem cells generate pericytes to promote tumor recurrence via vasculogenesis after stereotactic body radiation therapy. Cancer Letters, 375(2), 349–359. https://doi.org/10.1016/j.canlet.2016.02.033.

    Article  PubMed  CAS  Google Scholar 

  46. Sun, B., Zhang, S. W., Ni, C. S., Zhang, D. F., Liu, Y. X., Zhang, W. Z., et al. (2005). Correlation between melanoma angiogenesis and the mesenchymal stem cells and endothelial progenitor cells derived from bone marrow. Stem Cells and Development, 14(3), 292–298. https://doi.org/10.1089/scd.2005.14.292.

    Article  PubMed  CAS  Google Scholar 

  47. Petit, I., Jin, D., & Rafii, S. (2007). The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends in Immunology, 28(7), 299–307. https://doi.org/10.1016/j.it.2007.05.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Li, P., Zhou, H., Di, G., Liu, J., Liu, Y., Wang, Z., et al. (2017). Mesenchymal stem cell-conditioned medium promotes MDA-MB-231 cell migration and inhibits A549 cell migration by regulating insulin receptor and human epidermal growth factor receptor 3 phosphorylation. Oncology Letters, 13(3), 1581–1586. https://doi.org/10.3892/ol.2017.5641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bie, Q., Zhang, B., Sun, C., Ji, X., Barnie, P. A., Qi, C., et al. (2017). IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells. Oncotarget, 8(12), 18914–18923. https://doi.org/10.18632/oncotarget.14835.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu, Y. L., Li, H. Y., Zhao, X. P., Jiao, J. Y., Tang, D. X., Yan, L. J., et al. (2017). Mesenchymal stem cell-derived CCN2 promotes the proliferation, migration and invasion of human tongue squamous cell carcinoma cells. Cancer Science, 108(5), 897–909. https://doi.org/10.1111/cas.13202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. McAndrews, K. M., McGrail, D. J., Ravikumar, N., & Dawson, M. R. (2015). Mesenchymal stem cells induce directional migration of Invasive breast cancer cells through TGF-beta. Scientific Reports, 5, 16941. https://doi.org/10.1038/srep16941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Melzer, C., von der Ohe, J., Lehnert, H., Ungefroren, H., & Hass, R. (2017). Cancer stem cell niche models and contribution by mesenchymal stroma/stem cells. Molecular Cancer, 16(1), 28. https://doi.org/10.1186/s12943-017-0595-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Aponte, P. M., & Caicedo, A. (2017). Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cells International, Artn 5619472. https://doi.org/10.1155/2017/5619472.

  54. Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469(7330), 314–322. https://doi.org/10.1038/nature09781.

    Article  PubMed  CAS  Google Scholar 

  55. Plaks, V., Kong, N. W., & Werb, Z. (2015). The Cancer Stem Cell Niche: How Essential Is the Niche in Regulating Stemness of Tumor Cells? Cell Stem Cell, 16(3), 225–238. https://doi.org/10.1016/j.stem.2015.02.015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ye, J., Wu, D., Wu, P., Chen, Z. G., & Huang, J. (2014). The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumor Biology, 35(5), 3945–3951. https://doi.org/10.1007/s13277-013-1561-x.

    Article  PubMed  CAS  Google Scholar 

  57. Sottile, F., Aulicino, F., Theka, I., & Cosma, M. P. (2016). Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis. Scientific Reports, 6, 36863. https://doi.org/10.1038/srep36863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Cabarcas, S. M., Mathews, L. A., & Farrar, W. L. (2011). The cancer stem cell niche-there goes the neighborhood? International Journal of Cancer, 129(10), 2315–2327. https://doi.org/10.1002/ijc.26312.

    Article  PubMed  CAS  Google Scholar 

  59. Davis, H., Irshad, S., Bansal, M., Rafferty, H., Boitsova, T., Bardella, C., et al. (2015). Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nature Medicine, 21(1), 62–70. https://doi.org/10.1038/nm.3750.

    Article  PubMed  CAS  Google Scholar 

  60. McLean, K., Gong, Y., Choi, Y., Deng, N., Yang, K., Bai, S., et al. (2011). Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. The Journal of Clinical Investigation, 121(8), 3206–3219. https://doi.org/10.1172/JCI45273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ding, D. C., Liu, H. W., & Chu, T. Y. (2016). Interleukin-6 from ovarian mesenchymal stem cells promotes proliferation, sphere and colony formation and tumorigenesis of an ovarian cancer cell line SKOV3. Journal of Cancer, 7(13), 1815–1823. https://doi.org/10.7150/jca.16116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Li, H. J., Reinhardt, F., Herschman, H. R., & Weinberg, R. A. (2012). Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discovery, 2(9), 840–855. https://doi.org/10.1158/2159-8290.CD-12-0101.

    Article  PubMed  CAS  Google Scholar 

  63. Luo, J., Ok Lee, S., Liang, L., Huang, C. K., Li, L., Wen, S., et al. (2014). Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene, 33(21), 2768–2778. https://doi.org/10.1038/onc.2013.233.

    Article  PubMed  CAS  Google Scholar 

  64. Liu, S., Ginestier, C., Ou, S. J., Clouthier, S. G., Patel, S. H., Monville, F., et al. (2011). Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Research, 71(2), 614–624. https://doi.org/10.1158/0008-5472.CAN-10-0538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tsai, K. S., Yang, S. H., Lei, Y. P., Tsai, C. C., Chen, H. W., Hsu, C. Y., et al. (2011). Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology, 141(3), 1046–1056. https://doi.org/10.1053/j.gastro.2011.05.045.

    Article  PubMed  CAS  Google Scholar 

  66. Cheng, P., Wang, J., Waghmare, I., Sartini, S., Coviello, V., Zhang, Z., et al. (2016). FOXD1-ALDH1A3 signaling is a determinant for the self-renewal and tumorigenicity of mesenchymal glioma stem cells. Cancer Research, 76(24), 7219–7230. https://doi.org/10.1158/0008-5472.CAN-15-2860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Cuiffo, B. G., Campagne, A., Bell, G. W., Lembo, A., Orso, F., Lien, E. C., et al. (2014). MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell, 15(6), 762–774. https://doi.org/10.1016/j.stem.2014.10.001.

    Article  PubMed  CAS  Google Scholar 

  68. Coffman, L. G., Choi, Y. J., McLean, K., Allen, B. L., di Magliano, M. P., & Buckanovich, R. J. (2016). Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop. Oncotarget, 7(6), 6916–6932. https://doi.org/10.18632/oncotarget.6870.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xue, J. G., Zhu, Y., Sun, Z. X., Ji, R. B., Zhang, X., Xu, W. R., et al. (2015). Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness. BMC Cancer, 15, ARTN 793. https://doi.org/10.1186/s12885-015-1780-1.

    Article  CAS  Google Scholar 

  70. Gabashvili, A. N., Baklaushev, V. P., Grinenko, N. F., Mel'nikov, P. A., Cherepanov, S. A., Levinsky, A. B., et al. (2016). Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells. Bulletin of Experimental Biology and Medicine, 160(4), 519–524. https://doi.org/10.1007/s10517-016-3211-y.

    Article  PubMed  CAS  Google Scholar 

  71. Berger, M., Muraro, M., Fagioli, F., & Ferrari, S. (2008). Osteosarcoma derived from donor stem cells carrying the Norrie's disease gene. The New England Journal of Medicine, 359(23), 2502–2504. https://doi.org/10.1056/NEJMc0807172.

    Article  PubMed  CAS  Google Scholar 

  72. Qian, H., Ding, X., Zhang, J., Mao, F., Sun, Z., Jia, H., et al. (2017). Cancer stemness and metastatic potential of the novel tumor cell line K3: an inner mutated cell of bone marrow-derived mesenchymal stem cells. Oncotarget, 8(24), 39522–39533. https://doi.org/10.18632/oncotarget.17133.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rodriguez, R., Rubio, R., & Menendez, P. (2012). Modeling sarcomagenesis using multipotent mesenchymal stem cells. Cell Research, 22(1), 62–77. https://doi.org/10.1038/cr.2011.157.

    Article  PubMed  CAS  Google Scholar 

  74. Lye, K. L., Nordin, N., Vidyadaran, S., & Thilakavathy, K. (2016). Mesenchymal stem cells: From stem cells to sarcomas. Cell Biology International, 40(6), 610–618. https://doi.org/10.1002/cbin.10603.

    Article  PubMed  Google Scholar 

  75. Tu, J., Huo, Z., Gingold, J., Zhao, R., Shen, J., & Lee, D. F. (2017). The Histogenesis of Ewing Sarcoma. Cancer Reports and Reviews, 1(2). https://doi.org/10.15761/CRR.1000111.

  76. Yeny, C. T., Eliazer, S., Xiang, L. L., Richardson, J. A., & Ilaria, R. L. (2005). Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells results in EWS/FLI-1-dependent, Ewing sarcoma-like tumors. Cancer Research, 65(19), 8698–8705. https://doi.org/10.1158/0008-5472.

    Article  Google Scholar 

  77. Riggi, N., Cironi, L., Provero, P., Suva, M. L., Kaloulis, K., Garcia-Echeverria, C., et al. (2005). Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Research, 65(24), 11459–11468. https://doi.org/10.1158/0008-5472.Can-05-1696.

    Article  PubMed  CAS  Google Scholar 

  78. Tirode, F., Laud-Duval, K., Prieur, A., Delorme, B., Charbord, P., & Delattre, O. (2007). Mesenchymal stem cell features of Ewing tumors. Cancer Cell, 11(5), 421–429. https://doi.org/10.1016/j.ccr.2007.02.027.

    Article  PubMed  CAS  Google Scholar 

  79. Shimizu, T., Ishikawa, T., Sugihara, E., Kuninaka, S., Miyamoto, T., Mabuchi, Y., et al. (2010). c-MYC overexpression with loss of Ink4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis. Oncogene, 29(42), 5687–5699. https://doi.org/10.1038/onc.2010.312.

    Article  PubMed  CAS  Google Scholar 

  80. Rodriguez, R., Rubio, R., Masip, M., Catalina, P., Nieto, A., de la Cueva, T., et al. (2009). Loss of p53 induces tumorigenesis in p21-deficient mesenchymal stem cells. Neoplasia, 11(4), 397–U106. https://doi.org/10.1593/neo.81620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Mohseny, A. B., Szuhai, K., Romeo, S., Buddingh, E. P., Briaire-de Bruijn, I., de Jong, D., et al. (2009). Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. The Journal of Pathology, 219(3), 294–305. https://doi.org/10.1002/path.2603.

    Article  PubMed  CAS  Google Scholar 

  82. Tolar, J., Nauta, A. J., Osborn, M. J., Mortari, A. P., McElmurry, R. T., Bell, S., et al. (2007). Sarcoma derived from cultured mesenchymal stem cells. Stem Cells, 25(2), 371–379. https://doi.org/10.1634/stemcells.2005-0620.

    Article  PubMed  CAS  Google Scholar 

  83. Lin, P. P., Pandey, M. K., Jin, F., Raymond, A. K., Akiyama, H., & Lozano, G. (2009). Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice. Carcinogenesis, 30(10), 1789–1795. https://doi.org/10.1093/carcin/bgp180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Boeuf, S., Kunz, P., Hennig, T., Lehner, B., Hogendoorn, P. C. W., Bovee, J. V. M. G., et al. (2008). A chondrogenic gene expression signature in mesenchymal stem cells is a classifier of conventional central chondrosarcoma. Journal of Pathology, 216(2), 158–166. https://doi.org/10.1002/path.2389.

    Article  PubMed  CAS  Google Scholar 

  85. Jain, S., Xu, R. L., Prieto, V. G., & Lee, P. (2010). Molecular classification of soft tissue sarcomas and its clinical applications. International Journal of Clinical and Experimental Pathology, 3(4), 416–428.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Naka, N., Takenaka, S., Araki, N., Miwa, T., Hashimoto, N., Yoshioka, K., et al. (2010). Synovial sarcoma is a stem cell malignancy. Stem Cells, 28(7), 1119–1131. https://doi.org/10.1002/stem.452.

    Article  PubMed  CAS  Google Scholar 

  87. Cironi, L., Provero, P., Riggi, N., Janiszewska, M., Suva, D., Suva, M. L., et al. (2009). Epigenetic features of human mesenchymal stem cells determine their permissiveness for induction of relevant transcriptional changes by SYT-SSX1. PLoS One, 4(11), ARTN e7904. https://doi.org/10.1371/journal.pone.0007904.

    Article  CAS  Google Scholar 

  88. Rodriguez, R., Rubio, R., Gutierrez-Aranda, I., Melen, G. J., Elosua, C., Garcia-Castro, J., et al. (2011). FUS-CHOP fusion protein expression coupled to p53 deficiency induces liposarcoma in mouse but not in human adipose-derived mesenchymal stem/stromal cells. Stem Cells, 29(2), 179–192. https://doi.org/10.1002/stem.571.

    Article  PubMed  CAS  Google Scholar 

  89. Riggi, N., Cironi, L., Provero, P., Suva, M. L., Stehle, J. C., Baumer, K., et al. (2006). Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Research, 66(14), 7016–7023. https://doi.org/10.1158/0008-5472.CAN-05-3979.

    Article  PubMed  CAS  Google Scholar 

  90. Charytonowicz, E., Cordon-Cardo, C., Matushansky, I., & Ziman, M. (2009). Alveolar rhabdomyosarcoma: Is the cell of origin a mesenchymal stem cell? Cancer Letters, 279(2), 126–136. https://doi.org/10.1016/j.canlet.2008.09.039.

    Article  PubMed  CAS  Google Scholar 

  91. Li, X., Pei, D. Q., & Zheng, H. (2014). Transitions between epithelial and mesenchymal states during cell fate conversions. Protein & Cell, 5(8), 580–591. https://doi.org/10.1007/s13238-014-0064-x.

    Article  Google Scholar 

  92. Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 35, ARTN e00191. https://doi.org/10.1042/BSR20150025.

    Article  CAS  Google Scholar 

  93. Yang, H., Lin, Y., & Liang, Y. (2017). Treatment of Lung Carcinosarcoma and Other Rare Histologic Subtypes of Non-small Cell Lung Cancer. Current Treatment Options in Oncology, 18(9), 54. https://doi.org/10.1007/s11864-017-0494-9.

    Article  PubMed  Google Scholar 

  94. Jang, S. H., Cho, H. D., Lee, J. H., Lee, H. J., Hong, S. A., Cho, J., et al. (2017). Sarcomatoid carcinoma in the trachea: A case report and literature review. Thoracic Cancer, 8(3), 278–282. https://doi.org/10.1111/1759-7714.12437.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Guan, M., Li, Y., Shi, Z. G., Xie, L. S., & Cao, X. L. (2014). Sarcomatoid carcinoma involving the nasal cavity and paranasal sinus: a rare and highly progressive tumor. International Journal of Clinical and Experimental Pathology, 7(7), 4489–4492.

    PubMed  PubMed Central  Google Scholar 

  96. Tanaka, H., Baba, Y., Matsusaki, S., Isono, Y., Kumazawa, H., Sase, T., et al. (2015). So-called carcinosarcoma of the duodenum with a chondrosarcomatous component. Clinical Journal of Gastroenterology, 8(5), 268–274. https://doi.org/10.1007/s12328-015-0595-6.

    Article  PubMed  Google Scholar 

  97. Choi, K. W., Lee, W. Y., Hong, S. W., Chang, Y. G., Lee, B., & Lee, H. K. (2013). Carcinosarcoma of the stomach: A case report. Journal of Gastric Cancer, 13(1), 69–72. https://doi.org/10.5230/jgc.2013.13.1.69.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ambrosini-Spaltro, A., Vaira, V., Braidotti, P., Rovati, M. P., Ferrero, S., & Bosari, S. (2006). Carcinosarcoma of the colon: report of a case with morphological, ultrastructural and molecular analysis. BMC Cancer, 6, 185. https://doi.org/10.1186/1471-2407-6-185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Feng, D., Fidele, N. B., Agustin, M. M., Jian, G., Bourleyi, S. I., Augustin, L., et al. (2015). Carcinosarcoma of parotid gland (malignant mixed tumor). Annals of Maxillofacial Surgery, 5(2), 240–243. https://doi.org/10.4103/2231-0746.175757.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gao, S., Huang, L., Dai, S., Chen, D., Dai, R., & Shan, Y. (2015). Carcinosarcoma of the gallbladder: a case report and review of the literature. International Journal of Clinical and Experimental Pathology, 8(6), 7464–7469.

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Li, B. Q., Liu, Q. F., Chang, X. Y., Hu, Y., Chen, J., & Guo, J. C. (2017). Pancreatic carcinosarcoma mimics malignant intraductal papillary mucinous neoplasm: A rare case report and literature review. Medicine, 96(23), ARTN e6961. https://doi.org/10.1097/MD.0000000000006961.

    Article  Google Scholar 

  102. Sun, T., Wang, G. F., & Zhang, Y. (2017). Primary splenic carcinosarcoma with local invasion of chest wall: a rare case. Journal of Zhejiang University-Science B, 18(8), 717–722. https://doi.org/10.1631/jzus.B1700262.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wang, B., Ren, K. W., Yang, Y. C., Wan, D. L., Li, X. J., Zhai, Z. L., et al. (2016). Carcinosarcoma of the lesser omentum a unique case report and literature review. Medicine, 95(14), ARTN e3246. https://doi.org/10.1097/MD.0000000000003246.

    Article  Google Scholar 

  104. Clark, J. J., Bowen, A. R., Bowen, G. M., Hyngstrom, J. R., Hadley, M. L., Duffy, K., et al. (2017). Cutaneous carcinosarcoma: a series of six cases and a review of the literature. Journal of Cutaneous Pathology, 44(1), 34–44. https://doi.org/10.1111/cup.12843.

    Article  PubMed  Google Scholar 

  105. Harms, P. W., Fullen, D. R., Patel, R. M., Chang, D., Shalin, S. C., Ma, L. L., et al. (2015). Cutaneous basal cell carcinosarcomas: evidence of clonality and recurrent chromosomal losses. Human Pathology, 46(5), 690–697. https://doi.org/10.1016/j.humpath.2015.01.006.

    Article  PubMed  CAS  Google Scholar 

  106. George, E. M., Herzog, T. J., Neugut, A. I., Lu, Y. S., Burke, W. M., Lewin, S. N., et al. (2013). Carcinosarcoma of the ovary: Natural history, patterns of treatment, and outcome. Gynecologic Oncology, 131(1), 42–45. https://doi.org/10.1016/j.ygyno.2013.06.034.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gupta, R., & Jenison, E. L. (2011). A rare case of carcinosarcoma of the fallopian tube presenting with torsion, rupture and hemoperitoneum. Gynecologic Oncology Case Reports, 2(1), 4–5. https://doi.org/10.1016/j.gynor.2011.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Singh, R. (2014). Review literature on uterine carcinosarcoma. Journal of Cancer Research and Therapeutics, 10(3), 461–468. https://doi.org/10.4103/0973-1482.138197.

    Article  PubMed  Google Scholar 

  109. Basibuyuk, I., Topaktas, R., & Elbir, F. (2017). Bladder carcinosarcoma: A case report with review of the literature. Archivio Italiano di Urologia, Andrologia, 89(3), 240–242. https://doi.org/10.4081/aiua.2017.3.240.

    Article  PubMed  Google Scholar 

  110. Liu, J., & Wu, H. (2011). Carcinosarcoma of female urethra with melanocytic differentiation. International Journal of Clinical and Experimental Pathology, 4(2), 206–209.

    PubMed  PubMed Central  Google Scholar 

  111. Sasaki, K., Desimone, M., Rao, H. R., Huang, G. J., & Seethala, R. R. (2010). Adrenocortical carcinosarcoma: a case report and review of the literature. Diagnostic Pathology, 5, Artn 51. https://doi.org/10.1186/1746-1596-5-51.

    Article  Google Scholar 

  112. Loh, T. L., Tomlinson, J., Chin, R., & Eslick, G. D. (2014). Cutaneous carcinosarcoma with metastasis to the parotid gland. Case Reports in Otolaryngology, 2014, 173235. https://doi.org/10.1155/2014/173235.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wick, M. R., & Swanson, P. E. (1993). Carcinosarcomas - Current Perspectives and an Historical Review of Nosological Concepts. Seminars in Diagnostic Pathology, 10(2), 118–127.

    PubMed  CAS  Google Scholar 

  114. Bloxham, C. A., Bennett, M. K., & Robinson, M. C. (1990). Bladder carcinosarcomas: three cases with diverse histogenesis. Histopathology, 16(1), 63–67.

    Article  PubMed  CAS  Google Scholar 

  115. Kanthan, R., & Senger, J. L. (2011). Uterine carcinosarcomas (malignant mixed mullerian tumours): a review with special emphasis on the controversies in management. Obstetrics and Gynecology International, 2011, 470795. https://doi.org/10.1155/2011/470795.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Guarino, M., Giordano, F., Pallotti, F., Polizzotti, G., Tricomi, P., & Cristofori, E. (1998). Malignant mixed mullerian tumor of the uterus. Features favoring its origin from a common cell clone and an epithelial-to-mesenchymal transformation mechanism of histogenesis. Tumori, 84(3), 391–397.

    Article  PubMed  CAS  Google Scholar 

  117. Szukala, S. A., Marks, J. R., Burchette, J. L., Elbendary, A. A., & Krigman, H. R. (1999). Co-expression of p53 by epithelial and stromal elements in carcinosarcoma of the female genital tract: an immunohistochemical study of 19 cases. International Journal of Gynecological Cancer, 9(2), 131–136.

    Article  PubMed  Google Scholar 

  118. Thompson, L., Chang, B., & Barsky, S. H. (1996). Monoclonal origins of malignant mixed tumors (carcinosarcomas). Evidence for a divergent histogenesis. The American Journal of Surgical Pathology, 20(3), 277–285.

    Article  PubMed  CAS  Google Scholar 

  119. Abeln, E. C. A., Smit, V. T. H. B. M., Wessels, J. W., DeLeeuw, W. J. F., Cornelisse, C. J., & Fleuren, G. J. (1997). Molecular genetic evidence for the conversion hypothesis of the origin of malignant mixed Mullerian tumours. Journal of Pathology, 183(4), 424–431.

    Article  PubMed  CAS  Google Scholar 

  120. Xi, J., Yan, X., Zhou, J., Yue, W., & Pei, X. (2013). Mesenchymal stem cells in tissue repairing and regeneration: Progress and future. Burns Trauma, 1(1), 13–20. https://doi.org/10.4103/2321-3868.113330.

    Article  PubMed  Google Scholar 

  121. Sohni, A., & Verfaillie, C. M. (2013). Mesenchymal stem cells migration homing and tracking. Stem Cells International, 2013, 130763. https://doi.org/10.1155/2013/130763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Perez, J. R., Ybarra, N., Chagnon, F., Serban, M., Lee, S., Seuntjens, J., et al. (2017). Tracking of Mesenchymal Stem Cells with Fluorescence Endomicroscopy Imaging in Radiotherapy-Induced Lung Injury. Scientific Reports, 7, 40748. https://doi.org/10.1038/srep40748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Shi, Y., Hu, G., Su, J., Li, W., Chen, Q., Shou, P., et al. (2010). Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Research, 20(5), 510–518. https://doi.org/10.1038/cr.2010.44.

    Article  PubMed  CAS  Google Scholar 

  124. Zhang, J., Sun, D. Q., Fu, Q., Cao, Q. W., Zhang, H., & Zhang, K. Q. (2016). Bone mesenchymal stem cells differentiate into myofibroblasts in the tumor microenvironment. Oncology Letters, 12(1), 644–650. https://doi.org/10.3892/ol.2016.4645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Pankajakshan, D., Kansal, V., & Agrawal, D. K. (2013). In vitro differentiation of bone marrow derived porcine mesenchymal stem cells to endothelial cells. Journal of Tissue Engineering and Regenerative Medicine, 7(11), 911–920. https://doi.org/10.1002/term.1483.

    Article  PubMed  CAS  Google Scholar 

  126. Sivamani, R. K., Schwartz, M. P., Anseth, K. S., & Isseroff, R. R. (2011). Keratinocyte proximity and contact can play a significant role in determining mesenchymal stem cell fate in human tissue. FASEB Journal, 25(1), 122–131. https://doi.org/10.1096/fj.09-148775.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Irfan-Maqsood, M., Matin, M. M., Heirani-Tabasi, A., Bahrami, M., Naderi-Meshkin, H., Mirahmadi, M., et al. (2016). Adipose derived mesenchymal stem cells express keratinocyte lineage markers in a co-culture model. Cellular and Molecular Biology (Noisy-le-Grand, France), 62(5), 44–54.

    CAS  Google Scholar 

  128. Li, Z. Z., Han, S. C., Wang, X. Q., Han, F., Zhu, X. X., Zheng, Z., et al. (2015). Rho kinase inhibitor Y-27632 promotes the differentiation of human bone marrow mesenchymal stem cells into keratinocyte-like cells in xeno-free conditioned medium. Stem Cell Research & Therapy, 6, ARTN 17. https://doi.org/10.1186/s13287-015-0008-2.

    Article  CAS  Google Scholar 

  129. Chavez-Munoz, C., Nguyen, K. T., Xu, W., Hong, S. J., Mustoe, T. A., & Galiano, R. D. (2013). Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis. PLoS One, 8(12), UNSP e80587. https://doi.org/10.1371/journal.pone.0080587.

    Article  CAS  Google Scholar 

  130. Kokubun, K., Pankajakshan, D., Kim, M. J., & Agrawal, D. K. (2016). Differentiation of porcine mesenchymal stem cells into epithelial cells as a potential therapeutic application to facilitate epithelial regeneration. Journal of Tissue Engineering and Regenerative Medicine, 10(2), E73–E83. https://doi.org/10.1002/term.1758.

    Article  PubMed  CAS  Google Scholar 

  131. Ghanavati, Z., Orazizadeh, M., Bayati, V., Abbaspour, M. R., Khorsandi, L., Mansouri, E., et al. (2016). Characterization of A Three-Dimensional Organotypic Co-Culture Skin Model for Epidermal Differentiation of Rat Adipose-Derived Stem Cells. Cell Journal, 18(3), 289–301.

    PubMed  PubMed Central  Google Scholar 

  132. Katikireddy, K. R., Dana, R., & Jurkunas, U. V. (2014). Differentiation Potential of Limbal Fibroblasts and Bone Marrow Mesenchymal Stem Cells to Corneal Epithelial Cells. Stem Cells, 32(3), 717–729. https://doi.org/10.1002/stem.1541.

    Article  PubMed  CAS  Google Scholar 

  133. Yao, L., & Bai, H. Q. (2013). Review: Mesenchymal stem cells and corneal reconstruction. Molecular Vision, 19, 2237–2243.

    PubMed  PubMed Central  Google Scholar 

  134. Li, Y., Shi, X., Yang, L. M., Mou, Y., Li, Y. B., Dang, R. J., et al. (2017). Hypoxia promotes the skewed differentiation of umbilical cord mesenchymal stem cells toward type II alveolar epithelial cells by regulating microRNA-145. Gene, 630, 68–75. https://doi.org/10.1016/j.gene.2017.08.006.

    Article  PubMed  CAS  Google Scholar 

  135. Mendez, J. J., Ghaedi, M., Steinbacher, D., & Niklason, L. E. (2014). Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds. Tissue Engineering. Part A, 20(11–12), 1735–1746. https://doi.org/10.1089/ten.TEA.2013.0647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Francois, S., Bensidhoum, M., Mouiseddine, M., Mazurier, C., Allenet, B., Semont, A., et al. (2006). Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: A study of their quantitative distribution after irradiation damage. Stem Cells, 24(4), 1020–1029. https://doi.org/10.1634/stemcells.2005-0260.

    Article  PubMed  Google Scholar 

  137. Ferrand, J., Noel, D., Lehours, P., Prochazkova-Carlotti, M., Chambonnier, L., Menard, A., et al. (2011). Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS One, 6(5), ARTN e19569. https://doi.org/10.1371/journal.pone.0019569.

    Article  CAS  Google Scholar 

  138. Wei, X., Wang, C. Y., Liu, Q. P., Li, J., Li, D., Zhao, F. T., et al. (2008). In vitro hepatic differentiation of mesenchymal stem cells from human fetal bone marrow. Journal of International Medical Research, 36(4), 721–727.

    Article  PubMed  CAS  Google Scholar 

  139. Itaba, N., Matsumi, Y., Okinaka, K., Ashla, A. A., Kono, Y., Osaki, M., et al. (2015). Human mesenchymal stem cell-engineered hepatic cell sheets accelerate liver regeneration in mice. Scientific Reports, 5, 16169. https://doi.org/10.1038/srep16169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Palakkan, A. A., Drummond, R., Anderson, R. A., Greenhough, S., Tv, K., Hay, D. C., et al. (2015). Polarisation and functional characterisation of hepatocytes derived from human embryonic and mesenchymal stem cells. Biomedical Reports, 3(5), 626–636. https://doi.org/10.3892/br.2015.480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Hao, N. B., Li, C. Z., Lu, M. H., Tang, B., Wang, S. M., Wu, Y. Y., et al. (2015). SDF-1/CXCR4 axis promotes MSCs to repair liver injury partially through trans-differentiation and fusion with hepatocytes. Stem Cells International, 2015, 960387. https://doi.org/10.1155/2015/960387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Bhonde, R. R., Sheshadri, P., Sharma, S., & Kumar, A. (2014). Making surrogate beta-cells from mesenchymal stromal cells: perspectives and future endeavors. The International Journal of Biochemistry & Cell Biology, 46, 90–102. https://doi.org/10.1016/j.biocel.2013.11.006.

    Article  CAS  Google Scholar 

  143. Ouyang, J. F., Huang, W., Yu, W. W., Xiong, W., Mula, R. V. R., Zou, H. B., et al. (2014). Generation of insulin-producing cells from rat mesenchymal stem cells using an aminopyrrole derivative XW4.4. Chemico-Biological Interactions, 208, 1–7. https://doi.org/10.1016/j.cbi.2013.11.007.

    Article  PubMed  CAS  Google Scholar 

  144. Sun, Y., Chen, L., Hou, X. G., Hou, W. K., Dong, J. J., Sun, L., et al. (2007). Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Medical Journal, 120(9), 771–776.

    PubMed  CAS  Google Scholar 

  145. Ning, J. W., Li, C. Y., Li, H. J., & Chang, J. W. (2011). Bone marrow mesenchymal stem cells differentiate into urothelial cells and the implications for reconstructing urinary bladder mucosa. Cytotechnology, 63(5), 531–539. https://doi.org/10.1007/s10616-011-9376-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Tian, H., Bharadwaj, S., Liu, Y., Ma, P. X., Atala, A., & Zhang, Y. Y. (2010). Differentiation of Human Bone Marrow Mesenchymal Stem Cells into Bladder Cells: Potential for Urological Tissue Engineering. Tissue Engineering Part A, 16(5), 1769–1779. https://doi.org/10.1089/ten.tea.2009.0625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Wang, R. A., Li, Z. S., Zhang, H. Z., Zheng, P. J., Li, Q. L., Shi, J. G., et al. (2013). Invasive cancers are not necessarily from preformed in situ tumours an alternative way of carcinogenesis from misplaced stem cells. Journal of Cellular and Molecular Medicine, 17(7), 921–926. https://doi.org/10.1111/jcmm.12078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Blanpain, C. (2013). Tracing the cellular origin of cancer. Nature Cell Biology, 15(2), 126–134. https://doi.org/10.1038/ncb2657.

    Article  PubMed  CAS  Google Scholar 

  149. Lott, D. G., Manz, R., Koch, C., & Lorenz, R. R. (2010). Aggressive behavior of nonmelanotic skin cancers in solid organ transplant recipients. Transplantation, 90(6), 683–687. https://doi.org/10.1097/TP.0b013e3181ec7228.

    Article  PubMed  Google Scholar 

  150. Verneuil, L., Varna, M., Leboeuf, C., Plassa, L. F., Elbouchtaoui, M., Loisel-Ferreira, I., et al. (2013). Donor-derived keratinocytes in actinic keratosis and squamous cell carcinoma in patients with kidney transplant. The Journal of Investigative Dermatology, 133(4), 1108–1111. https://doi.org/10.1038/jid.2012.422.

    Article  PubMed  CAS  Google Scholar 

  151. Verneuil, L., Leboeuf, C., Bousquet, G., Brugiere, C., Elbouchtaoui, M., Plassa, L. F., et al. (2015). Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients. Oncotarget, 6(39), 41497–41507. https://doi.org/10.18632/oncotarget.6359.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Korkaya, H., Kim, G. I., Davis, A., Malik, F., Henry, N. L., Ithimakin, S., et al. (2012). Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Molecular Cell, 47(4), 570–584. https://doi.org/10.1016/j.molcel.2012.06.014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Liu, M., Sakamaki, T., Casimiro, M. C., Willmarth, N. E., Quong, A. A., Ju, X., et al. (2010). The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Research, 70(24), 10464–10473. https://doi.org/10.1158/0008-5472.CAN-10-0732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Shigdar, S., Li, Y., Bhattacharya, S., O'Connor, M., Pu, C., Lin, J., et al. (2014). Inflammation and cancer stem cells. Cancer Letters, 345(2), 271–278. https://doi.org/10.1016/j.canlet.2013.07.031.

    Article  PubMed  CAS  Google Scholar 

  155. Nwabo Kamdje, A. H., Takam Kamga, P., Tagne Simo, R., Vecchio, L., Seke Etet, P. F., Muller, J. M., et al. (2017). Developmental pathways associated with cancer metastasis: Notch, Wnt, and Hedgehog. Cancer Biology & Medicine, 14(2), 109–120. https://doi.org/10.20892/j.issn.2095-3941.2016.0032.

    Article  Google Scholar 

  156. Vermeulen, L., Melo, F. D. S. E., van der Heijden, M., Cameron, K., de Jong, J. H., Borovski, T., et al. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 12(5), 468–U121. https://doi.org/10.1038/ncb2048.

    Article  PubMed  CAS  Google Scholar 

  157. Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. The Journal of Cell Biology, 172(7), 973–981. https://doi.org/10.1083/jcb.200601018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences. The Hypothesis was proposed and designed by AG. SA prepared the first draft of the Manuscript. The manuscript was critically reviewed by both AG and SA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ghaderi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaderi, A., Abtahi, S. Mesenchymal Stem Cells: Miraculous Healers or Dormant Killers?. Stem Cell Rev and Rep 14, 722–733 (2018). https://doi.org/10.1007/s12015-018-9824-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9824-y

Keywords

Navigation